If it's not what You are looking for type in the equation solver your own equation and let us solve it.
900x^2+50090x+2000=0
a = 900; b = 50090; c = +2000;
Δ = b2-4ac
Δ = 500902-4·900·2000
Δ = 2501808100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2501808100}=\sqrt{12100*206761}=\sqrt{12100}*\sqrt{206761}=110\sqrt{206761}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50090)-110\sqrt{206761}}{2*900}=\frac{-50090-110\sqrt{206761}}{1800} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50090)+110\sqrt{206761}}{2*900}=\frac{-50090+110\sqrt{206761}}{1800} $
| 8(x+7)=-19 | | 2y=5y+18/5 | | 5+4(q-1)=37 | | x2-7=35+5 | | x3+-6x2+9x+-2=0 | | x^2+6000000x-2*10^16=0 | | 30=4s-6 | | 69-v=178 | | x+x1.3=300 | | 5q+12=42 | | x/100+x/130=300 | | 2x/4=x-3/5 | | 12x^-13x+4=10x^-5x+1 | | 4b-12=(24)=0 | | 10x+3–2x=-45 | | 4n=+7 | | 4b-12(24)=0 | | x/1.3x=300 | | 5/6*(x-20)=30 | | 100*0,8^x=20 | | 7x+5/5-x-11/14=3(x-25)/7+35 | | x100+x130=300 | | 5x-(7x+7)=19 | | 4x+21=8x-15 | | Y-7=0.5(x-2) | | x3-5x2+10x-80=0 | | 3v+10=34 | | `7+5m=8m+13` | | x+1.3x=300 | | 3x-x=10°-12° | | 12x-40=160+8x | | 14.5=7x+4 |